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Introduction
Classical game theory

Game theory is widely used for description and analysis of economic players' behavior in 
microeconomics, public sector economics, political economics and other fields of economic 
theory.

General ideas of classical game-theoretic analysis:
Game in normal form (as a model of players interaction)
-Several participants (players)
- Several possible strategies for each player
-Payoff functions
Principle of Nash equilibrium (as a method to define agents strategies during their 
interaction)
-Nash equilibrium is a basic concept of game theory. According to this optimal outcome of a 
game is one where no player has an incentive to deviate from his or her chosen strategy after 
considering the choices of other players.
Principle of elimination of dominated strategies
-Strategy is called dominated if there exists an alternative strategy which provides a greater 
gain no matter what strategies are chosen by the other players
-Domination principle means that rational players will not use dominated strategies
-Dominance elimination can be made iteratively
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Evolutionary game theory: considered problems
 1. Correspondence of real behavior of economic agents to Nash equilibrium and dominance elimination 

principles

 Typically the search of Nash equilibrium and sets of nondominated strategies deliveres rather 
sophisticated math tasks. It is necessary to know all sets of strategies and payoff functions for their 
solution ( see models of Cournout and Bertrand economical competition) .

 A usual participant of such interaction has precise information only about his own strategies and payoff 
function and often doesn't know about mentioned decision-making principles

 Why should we expect that his behavior will be relevant to the principles?

 Justification by means of models of adaptive and imitative behavior (MAIB)

 These models show that convergence to Nash equilibrium and dominance elimination proceed 
from general properties of evolutionary, adaptative and imitative mechanisms of behavior 
formation

 In this case complete information awarness and rationality in choosing strategies are not required. 
It suffices to compare the payoffs for current behavior strategy and chosen alternative.

 Definition of evolutionary stable strategy and its relation to Nash equilibrium.
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 2.How to determine players utility functions for particular interactions? Standard 
approach: use concepts of particular sciences.

 In economics: 'homo economicus‘ concept (P.Samuelson)

 In the role of a producer: profit maximisation

 In the role of a consumer: maximisation of the demand utility

 Discrepancy to real behavior: russian labour market.

Alternative: consider evolution of preferences (L. Samuelson)

 Model of evolutionary mechanisms natural selection

 In this model a society of interacting populations with different 
evolutionary mechanisms is considered

 Analysis of this model shows that if replication is in the set of competing 
mechanisms then behavior dynamics in the society is coordinated with 
maximization of individual fitness (Ch. Darwin). What about human 
populations?

 3.Do individuals adjust to other interests or extensively influence  payoff 
functions of other players? (agressive advertising, drug distribution)
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Population game
Population game is a static model of interaction in a large homogenuous group of 
individuals.
This concept is an analog of a normal form game in classic game theory, so general 
noncooperative optimality principles are summarized:
 Nash equilibrium
 Dominance solution
 Idea of evolutionary stable strategy is added

Formally a population game G is a set of parametres
G = < >, where
J is the set of players strategies 
 - standart simplex
 is the payoff function for players that use strategy j under strategy distribution
and other parametres of the model (e.g. total population size and environmental 
conditions). For social populations, the payoff function usually corresponds to 
consumer utility, income or profit. In this paragraph the function is exogenous.
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Example of population game (M.Smith)
Consider pair competitive contests for one resource. Individuals of a population try to 
find the desired object (food, lodging or a female). Some of them get it without 
collision, others conflict in pairs, where one of them is the owner α and another one is 
invader β
 - the sets of strategies in each role
 - profits of individuals if α choses and β -
 - probability of collision. It doesn't depend on startegies and is determined by 
the size of population N
 - profit of individuals avoided collision
 Strategy of individual is a pair , where  and . It is a rule of 
behavior choice according to the role.
 Function shows the average payoff of individuals with strategy j
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Let  and denote distributions over alternatives for the both roles α and β 
which correspond to strategy π distribution. Then

, 
And for strategy

Consider also the situation where players don't distinguish their roles. Then the set 
of strategies is the set of alternatives: 

In this case game G is equivalent to the game

The set of behavior alternatives and individual payoffs may not depend on the role  in
the previous model too. However, behavior models for those similar situations are 
completely different.  
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Main static optimality principles 
Nash equilibrium for the populational game G is a distribution π* such that any 
startegy which is used with positive frequence is an optimal  reply to the given 
distribution under any parameter ω, i.e.

(2.1)

Let payoff functions in game G be expansible, i.e. 
as in the model of pair contests. Note that a part of the payoff function that depends 
on the strategy chosen by a player is independent of the parameter ω. Then (2.1) is 
equivalent to the following condition, which doesn't include the parameter ω:

The concept of Nash equilibrium is the best-known optimality criterion used in 
strategic behavior modeling. However, it is known from analysis of dynamic models, 
that among Nash equilibrium there can exist unstable states, that are not realized in 
practice. For this reason we also consider stronger optimality criteria.
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Evolutionary stable strategy (ESS) for the populational game G is a distribution π*
such that 

where is the average payoff for mixed strategy or distribution π
when individuals in the population are distributed in pure strategies according to π’.

The concept of ESS can be interpreted in the following way. Let a small group of 
'mutants' with strategy distribution π be implemented in a population π*. If 
distribution π* is evolutionary stable then the implemented group can't survive in the 
population, because its average fitness is less then the fitness of initial strategy π*.
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Any ESS is a Nash equilibrium. If π is not an equilibrium then mutants with pure 
strategy that is a best reply to π have grater payoff than the average payoff for the 
main population. This statement is correct if the share of one individual in the 
population is negligible, i.e. any change of his strategy doesn't influnce payoff
ordering. Otherwise it is necessary to revise the ESS concept (Schaffer,1989).

For a symmetrical game in normal form with n players, set of strategies S and payoff 
function , ESS is defined as a symmetric situation such that any 
strategy change by any player doesn't make his profit more than the profit of other 
players with the former strategy. I.e. a mutant doesn't have any profit benefits. 

Such ESS can be not a Nash equilibrium. In particular, in the game which 
correspond to symmetric Cournout oligopoly, players use 'market power' at the Nash 
equilibrium and realise lower production volumes in comparison with the competitive 
equilibrium, while the ESS corresponds to the competitive equilibrium.
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Strict equilibrium of population game G is distribution π* such that all players use 
one strategy, which is the best reply to itself:

Note, that any strict equilibrium is an ESS, even for groups with sufficiently large 
finite size.
Selten (1988) showed that there are no ESS except for strict equilibria for random 
contests with role asymmetry of players ('owner' — 'invader').

For general payoff functions Nash equilibrium may not exist. In other 
classes of games there are a lot of equilibria, some of them are unstable. In this case 
another optimality principle is appealing — domination that is also relative to the 
Darwinian principle of natural selection.
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Strategy j dominates strategy i on the set of distributions if for any 
distribution over strategies  the strategy j provides a greater gain than 
strategy i 

Set is called a dominating set if it can be obtained by iterative exclusion of 
dominated strategies, i.e. there exists integer T >1 such as 

on
The described procedure for iterative elimination of dominated strategies can be 
considered as a quasi-dynamic model of behavior microevolution within a 
population. Indeed, this procedure describes a sequential reduction of the set of 
strategies used by players: at each stage, more efficient (better fitted) strategies are 
substituted for less efficient ones.

If ε>0    then   strategy j  strictly dominates   strategy i (        ), J'  is a strictly 
dominating set.
Concepts of domination by a mixed strategy and a set domination in mixed strategies 
are similar
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Search of Nash equilibrium and dominating sets of a population game is generally a
sophisticated optimization problem. For random pair contests it is possible to reduce them 

to the known computational tasks for appropriate bimatrix games .

Proposition2.1 Distribution π* is a Nash equilibrium of game       such that 
and competitors don't differ conditions if and only if (π* ,π*) is Nash 

equilibrium in mixed strategies of symmetrical bimatrix game ,         i.e

Proposition2.2 Distribution π* such that is strict equilibrium of game if and only 
if for any ,i.e. (s,s) is strict symmetric Nash equilibrium of game Г in pure
strategies.

Proposition2.3 Strategy s dominates strategy r ( ) in game if and only if in 
game Г, i.e  for any 

Proposition2.4 Distribution is Nash equilibrium of game G for assymetric pair 
contests if and only if is Nash equilibrium in mixed strategies of game Г=
=

G
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 So, for any random pair contests Nash equilibrium of population game 
correspond to Nash equilibrium of bimatrix game that describes pair 
interaction

 Analogue relation exists for random interactions with larger number of 
participants when a separate local interaction is characterized by the game of n 
players. The results are easily generalized for the case of interpopulation 
collisions when individuals from different populations or social groups ('predator-
prey', 'employer-employees' etc) play different roles.

The main condition of the correspondence is non-correlation of distribution in 
interacting groups with players' strategies
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Model of adaptive-imitative behavior (MAIB)
In which cases adeptive-imitative mechanisms form population behavior that 
corresponds to Nash principle and principle of dominated strategy elimination?

Let population game  describe interaction of population individuals that 
happens continiously, at every moment of time.
The number of individuals and the external factors are fixed( do not depend on ω)
With intensity which depends on current player distribution over
strategies π and current payoff vector a player with strategy j turns 
into 'adaptive' status where reconsiders his behavior
In adaptive status player with startegy j chooses i as alternative with probability

Current and alternative strategies are compared. If alternative strategy i is better 
then initial strategy j (i.e. gives individual the greater distribution under this 
distribution over strategies) then the player changes his strategy to i with probability 
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Then is the average share of players who change their strategy j to strategy 

from set  at time t, - the share of players who change their strategy 

from set to j.

So, equations of behavior dynamics look like (2.2)

Functions are such that 

Mentioned conditions guarantee that path doesn't come out set П at any moment 

of time t and with any initial distribution
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MAIB. Examples.
Example 1. Let the intensity of status change to adaptive be constant. Alternative strategy is chosen by means of random 
imitation. And the probability of changing current strategy to alternative is proportional to the difference between the
corresponding payoff functions. So, 

And (2.2) looks like

This system is an analogue of autonomus continuous model of replicator dynamics (see part 3)

Example 2. Alternative strategy is chosen with equal probabilities from the set of possible strategies, i.e. 

This example illustrates the mechanism of individual adaptation when each player knows the whole set of possible 
strategies, and adaptation happens according to current payoff values. Adaptation doesn't depend on behavior of other 
population individuals.

It is evident that there are many different MAIBs. The following theorems reveal relation MAIB stable states and 
solutions of the corresponding population game. Note that any Nash equilibrium of population game G is a steady 
state of MAIB.
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Relation between MAIB stable states and population game solutions
Denote as a set of best replies to distribution π .

Theorem 2.1: Let MAIB meet the following conditions 1), 2) and 3) or 3') :
1)For any  and any 
(intensity of changing status to adaptive is positive for all strategies)
2) For any  functions look like where for any
(probability of strategy choice as alternative is function of corresponding payoff difference and is positive 
funder the positive argument )
3)For any 
(probability of strategy choice as alternative is positive for any strategy that gives maximum payoff under 
the current distribution over strategies)
3')For any and q>0
(for any pure strategy with maximum payoff, probability of this strategy choice as alternative is not less 
than its share in the population multiplied by some constant)
Then 
Any Lyapunov stable point π* of system (2.2) is Nash equilibrium of population game 

b) if initial distribution and for path  there exists then π* is Nash
equilibrium, for game G
c) if π* is a of strict equilibrium for population game G then π* is an assymptoticaly stable point of system
(2.2)
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Theorem 2.2: Let MAIB (2.2) meet conditions 1 and 2 of theorem 2.1 and moreover

1.for any
(alternative strategy is chosen by random imitation)
2. if then 
(intensity of changing status to adaptive decreases with the raise of payoff function)
3. increases monotonically in x
(probability of strategy choice as alternative rises monotonically for  payoff remainder)

If  is a strictly dominating set of strategies in populational game then,
for any  and initial distribution

Notes
•Other variants of such consistency conditions of MAIB dynamics with Nash and dominance 
decisions (see Samuelson L., Zhang J.(1992) and Weibull (1995)) relate to the concept of 
monotonous dynamics s.t. 
At the same time there exist adaptation models that don't meet theorems 2.1 and 2.2. Models of 
evolutional mechanisms' natural selection considered in the next part explain why we nevertheless 
should expect coherence of real behavior dynamics with the mentioned optimality principles. 
Moreover, payoff functions of players are endogeneously defined in the frames of these models.
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Replicator Dynamics Model (RDM)
Population is characterized with a set S of possible strategies 
Strategy distribution of individuals at the current moment is set by vector 
Individuals differ only in behavior strategies, they don't change it during their life, 
strategy is inherited
In case of populations with both males an females, each of them should be 
considered as a separate population
Genetical mechanism of inheritance: the strategy is determined by genes, connected 
with sex. Mechanism of imitation: the strategy is defined by imitating behavior of the
parent of the same sex.
The result of the interaction in population during a period of time is characterized 
for players with strategy s by fertility function that determines the average 
number of offsprings. It is also characterized by survival function that 
determines the probability to survive under distribution π and population size N.
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Denote - the number of those who use strategy s .
Then popultion dynamics , meets the following system:

(3.1)
Where is a strategy fitness function. It formalizes the 
Darwinian concept of individual fitness.
At first sight a concept of payoff function is inapplicable to this model. Players’ strategies are 
fixed, the are not approaching to smt and don't choose anything. However, the picture changes
if we look at strategy distribution dynamics.

The following theorem shows that behavior assymptotics in such population corresponds to 
fitness as a payoff function for this population. Particularly, if for strategy 
distribution approaches to stationary, then there are only those strategies in population that 
maximize fitness (corresponds to Darwinian principle of natural selection: only most fitted 
survive). If in any distribution one strategy fits better than another, then a part of the worst 
strategy in distribution π(t) approaches to 0 while .In this case fitness is at 
endogenuous utility function of this model.
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Relation of Nash equilibria with stable MRD points
Asymptotic stability of ESS

Relation of dominating sets of strategies with behavior dynamics
Theorem 3.1 (on relation of Nash equilibrium with stable points of RDM): Assume that the 
fitness function is reperesentable in additive form 
Then 
1) any stable (Lyapunov) distribution π* of system (3.1) is a Nash equilibrium in population 
game 
2) if for a certain path , the initial distribution and 
then π* is a Nash equilibrium of the specified population game

Note that system (3.1) isn't closed, because its right part also depends on N(t). Conception of 
stable distribution for such system is formally defined in Bogdanov, Vasin (2002)

Theorem 3.2 (on asymptotic stability of ESS): Assume that in theorem 3.1 π* is evolutionary 
stable strategy for population game . Then π* is an asymptotically stable distribution of 
system (3.1)

Theorem 3.3 (on the relation between dominating sets of strategies and behavior
dynamics): Assume that S is a strictly dominating set of strategies in the game  
. Then, for any and any on the corresponding path of 
system 3.1
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Random imitation
Replicator Dynamics Model describes activity of evolutionary mechanism that 
provides direct inheritance of strategies by children. In what degree are the stated
results depend on concrete evolutionary mechanism? Turns out that it plays a very 
important role. Let's consider the mechanism of random imitation as an alternative 
example 

This model differs from replicator dynamics only in one point: new individuals do not 
inherit strategy, they follow a strategy of randomly chosen adult. Then the population 
dynamics are described 

Such system dynamic corresponds to payoff function in the sense of theorems 
3.1-3.3. Thus, viability turns out to be an endogenous payoff function of individuals 
in the corresponding dynamical process.

Proceeding from the previous example it seems that we have exchanged arbitrariness 
in the choice of payoff functions for arbitrariness in the choice of evolutionary 
mechanisms. However, actual evolutionary mechanisms are subject to natural 
selection. Only the most efficient mechanisms survive in the process of competition.
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Model of evolutionary mechanisms competition
Consider the corresponding model of a society that includes several populations that 
differ only in their evolutionary mechanisms.
 Individuals of all populations interact and do not distinguish population characters 
in this process. Thus, the evolutionary mechanism of an individual is an 
unobservable characteristic.
 Fertility and viability functions describe the outcome of the interaction for each 
strategy and depend on the total distribution over strategies and the size of the 
society.
 The set of strategies S and the functions are the same for all populations.
Denote
 L – the set of populations
 - the size of population l
 N – the total population size
 - distribution over strategies in population l.
Then the total distribution over strategies is 
Assume that operator       corresponds to the evolutionary mechanism of population l
and determines the dynamics of distribution       .
(For example, in one population it is replication dynamics, in an other - random 
imitation, and so on. Particularly, dynamics may relate to maximization of some 
payoff function) 
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Then the dynamics of the society are governed by equations

(3.2)

Theorem 3.4. Let there exists a population of replicators in the society. Then the total distribution π(t) over 

strategies meets the following analogs of theorems 3.1 and 3.2:

1) any stable distribution π of system (3.2)  is a Nash equilibrium of the population game 

2) if for path            initial distribution and then π* is a Nash equilibrium 

of the population game G for path 

3) if  π is a strict equilibrium of the game G then π is an asymptotically stable distribution for system (3.2).

Thus, the evolutionary mechanisms selection model confirms that individual fitness is an endogenous 

utility function for self-reproducing populations.
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 The idea of the proof for propositions 1 and 2 is quite easy: if stationary 
distribution over strategies is not Nash equilibrium of fitness function then 
nothing can prevent expansion of replicators that use the best reply strategy. That 
is a contradiction to its stability

 Generalization of theorem 3 for elimination of dominated strategies is possible 
under more strict assumptions on the variety of evolutionary mechanisms. For 
any evolutionary mechanism and a pair of strategies s,r, let us call an s,r-
substitute of mechanism       a mechanism such that for strategies other than s 
and r the shares of individuals who apply these strategies change as under 
mechanism       , except that instead of strategy s they always play r. According to 
(Vasin, 1995), if for any s,r,l the set of mechanisms includes all possible 
substitutes of , then as for any strictly dominated strategy 
s.

 The results of this section are formulated for a homogenuous population, without 
taking sex or age in consideration. It is easily generalized for populations with 
such structures. Fitness analogue in this case is a rate of balanced growth of the
population, it is determined by the Frobenius number of the Leslie matrix (see 
Semevskiy, Semenov, 1982)
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Conclusion
Models and results of evolutionary game theory show that behavior evolution in a self-
reproducing population corresponds to well-known optimality principles — Nash equilibrium 
and elimination of dominated strategies
Endogenously formed payoff function corresponds to Darwinian concept of individual fitness

Problems
However in biological and social populations cooperative and altruistic behavior are well-
known. It seems that they don't correspond to optimization of individual fitness
 Problem of stability of mixed equilibrium, where more than one pure strategy is used with 
positive probability. This problem appears in case of interpopulation interaction where payoff 
for one population depends on distribution over strategies in another population. It also 
appears in case of random contests with role asymmetry between participants. For such games 
mixed Nash equilibria are never evolutionary stable and strict equilibria may not exist. So, 
sufficient conditions of stability don't work
Relevance of mentioned evolutionary models to social populations. Superindividual is a self-
reproducing structure that uses human population as a source for its reproduction. It can 
influence behavior dynamics in this population
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II. Stability of equilibrium. 
Pecularities of social behavior 

evolution.
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Stability problem for mixed equilibrium
Consider game Г of two populations with sets of strategies and        
and payoff functions and that show interaction result for all 
strategies
Assume that individuals of the 1st population interact only with individuals of secon population 
and vice versa: individuals of the 2nd population interact only with individuals of the 1st . 
At any moment of time t each individual uses a chosen strategy
Assume that

are population distributions over strategies.
Point  is Nash equilibrium of game Г if for any i, j 

Equilibrium is called mixed if for any i, j 
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It is easy to see that
 For any game with indescrete payoff function there exist a Nash equilibrium
In nonsingular case amount of positive coordinates p and q is the same

p(t) and q(t) change according to the system

This system is called Н-согласованной if
1) Functions  and are such as 

for any distributions and payoff vectors 
so
That means that any Nash equilibrium is a stable point of system (4.1)
2) Functions c and d are measurable functions over t and continiously differentiable over p(0) 
and q(0). Derivatives are equibounded over t.
3) Set is invariant of system (4.1). Vector-functions A, B, G and H are continiously 
differentiable.
Note that MAIB, МАР and a system with positive functions ..generally correspond to these 
assumptions
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Note that system (4.1) can be converted to autonomous system

(4.2)

if for any t, p(0), q(0) 

This occasion takes place in interaction between populations with fixed sizes or between 
individuals with different roles in one population, for example, between 'owners' and 'invaders' 
(Maynard Smith, 1982)

Consider game Г, system (4.1) and corresponding autonomous system (4.2)
Stable point of system (4.2) is called singular if there is some eigenvalue λ of the Jacobian 
matrix that is equal to 0
Point (p,a) is called a centre if for every eigenvalue Reλ=0, Imλ≠0
Point (p,a) is called a saddle if there is an eigenvalue such that Reλ>0
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Theorem 4.1: Any mixed equilibrium (p*, q*) is either a singular point, or a centre point, 
or a saddle point of (4.2)
in the latter case (p*, q*) is an unstable point of the system (4.1) for any functions c, d.

This theorem doesn't solve the question of stability for 'centre' points where all 
eigenvalues of the linearized matrix are purely imaginary. Let's use a method developed 
by Ritzberger and Vogelsberger (1990) and based on Liouville theorem.

Consider system According to this theorem, the field that is free of 
divergence ( ) keeps any volume constant and has noasymptotically stable 
points.
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Let's describe MAIB class such that the given method permits to prove the abscence of 
asymptotically stable equilibria. 
General MAIB equations for an interpopulation game are:

Theorem 4.2: Assume that interpopulation MAIB is such that
1) don't depend on  (the intensity of the pass to adaptive status and the probability 
of strategy change don't depend on distribution over strategies in the individual’s population. 
However, it can depend on distribution over strategies in the other population taking part in 
interacrion)
2)  (the alternative strategy is chosen by means of random imtation of other 
individuals from the same population)
Then any mixed equilibrium is not asymptotically stable
 If the probability to choose a strategy as an alternative for individuals doesn't depend on the 
distribution over strategies in the same population then under general assumptions, the divergence of
the vector field is determined by the right parts of the system is negative, and convergence to mixed 
equilibria is possible.
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The problem of convergence to amixed equilibrium was considered in the literature 
also for iterative and continuous processes such as the fictitious play and Braun 
process for a game in normal form.
Denote , mixed strategies at stage t. Then discrete Braun process is 
described by the system:


where is a payoff function of player a in mixed strategies
 is a set of singular mixed strategies of player a that correspond to the set of 
his/her pure strategies

With respect to about behavior dynamics in the game of populations a   A, the process 
can be interpreted as adaptive in such way: after every period t part 1/t of each 
population changes its strategy to one of the best replies’.
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Braun conjectured and Robinson proved convergence of the discrete process to a 
mixed equilibrium for any zero-sum bimatrix game.
Danskin showed convergence of this process for 2-person zero-sum games with 
continuous payoffs functions and compact sets of strategies
Fudenberg and Kreps established convergence for nonantagonistic bimatrix game 
2x2 with one pure mixed Nash equilibrium
Benaim and Hirsch extended the result for 2x2 games with several Nash equilibria.
In Bogdanov developed the approach by Belenkiy and proved that convergence is
guaranteed for any bimatrix game that may be converted to zero-sum by means of 
transformation combination:

a) adding a constant to some column of the payoff matrix of the 1st player
b)adding a constant to same row of the payoff matrix of the 2nd player
c)multiplication of any payoff matrix by same positive constant

It is known that those transformations keep the same set of Nash equilibria
However, this result doesn’t hold for 2-person games in general
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The fictitious play process doesn't converge for Shapley example, with payoff 
matrices:

If pure strategies are taken as an initial point then the choice of 
strategies at times follows the cycle with six strategies:

(1,1) → (1,3) → (3,3) → (3,2) → (2,2) → (2,1) → (1,1)
The number of periods when the process is in each of these states grows increases 
exponentially in the number of rounds. Obviously the fictious play process doesn't 
converge.

For some nonantagonistic games, inparticular for Shapley example, the paths of the
fictitious play process behave as the averages of RDM over time. It is shown that 
RDM is equivalent to MAIB particular case that corresponds to the theorem 4.2. At 
the same time not only the paths of these MAIB but also their averages over time 
don't converge to the equilibrium in Shapley example.
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The best convergence to mixed equilibrium is provided by some more complex adaptive dynamics.
Consider the following modification of indiscrete process of fictious play for the game of two players:

(4.3)

where is reply of mixed strategy of player a at the moment of time.
is the best reply of player a to partner’s strategy 

The idea is that approximates when λ is quite big, i.e. the best reply is computed for the 
future strategy.

For Shapley example 0,0413<γ/(1-γ)<0,0638 is sufficient for local stability of the equilibrium for system 
(4.3)
One more direction of interest in this field is gradient dynamic models where the mixed strategy of each 
player changes to the direction of his payoff function gradient. It is shown that if the gradient is computed 
for the strategy of partner at the current moment, then Nash equilibrium is never locally stable for the 
system. However, if the gradient is computed for the future partner’s strategy defined as in the case of the
fictitious play then a relevant choice of γ provides stability. 
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About evolution of altruism and cooperation
Does the principle of individual fitness maximization correspond to actual behavior 
in biological and social populations?
What refinements should be implemented to the model for more precise reflection 
of behavior evolution ?

First, consider behavior in biological populations. A general opinion of biologists is 
that, on the whole, the principle of individual fitness maximization does not 
contradict with actual behavior (see III Congress of the ESEB, 1991). Exceptions: 
altruistic and cooperative behavior. 
The concepts of altruistic and cooperative behavior may be illustrated by different 
variants of the  ‘Prisoner's dilemma’. In this symmetric two-player game each player 
has two possible strategies: to cooperate (C) or to be selfish (S). 

In the general Prisoner’s dilemma, given any behavior of the other player, the selfish 
strategy is more profitable ,     while at the same time the total gain is 
maximal when both players cooperate 
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Consider the following payoff matrix

In this game there exists a unique Nash equilibrium, which corresponds to selfish 
behavior and is also a dominance solution. However, in actual Prisoner’s dilemma-
like situations, players often cooperate.

Altruistic behavior deviates even more from individual fitness maximization. 
Consider the following payoff matrix (A denotes altruistic behavior, S denotes selfish 
behavior):

Here, altruistic behavior by one player combined with selfish behavior by the other 
player corresponds to total fitness maximization. Meanwhile, the altruist in such an 
outcome obtains less than his guaranteed payoff, which he could get under his Nash 
equilibrium strategy.
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As an example of cooperative behavior in biological populations, let us note the 
behavior of animals that take turns standing guard, or predators that participate in 
joint hunting. Guard gives a signal when predator is coming. Profitable deviation:
 Don't safeguard and don't give a signal
 Safeguard and don't give a signal
Giving signal attracts predator attention to the guard. If no one safeguards than 
everybody loose. 

Another example is joint hunting. Selfish players save energy in prejudice of 
everybody.
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Examples of altruism are typical in relatives interaction.
The altruistic behavior of parents towards children 
 is rather widespread and does not contradict with the concept of fitness 

maximization, since fitness is equal to the sum of fertility and viability. 
 If individual saves his offspring at predator's expense then it is optimal from the 

fitness point of view

Interesting examples of altruism are those that do not relate to individual fitness 
maximization
behavior of social insects (bees, ants, termits)  
 Individuals in families don't maximize their individual fitness because they have 

no offspring. But they are fearlessly attacking any predator protecting their family
The explanation is that individuals in insect families are close relatives. 

A shortcoming of the model of direct inheritance is that it takes into account only the 
relative type ''parent-child'' and does not consider relations between siblings, cousins, 
etc. Taking these relations in account, it is possible to explain the spread of 
cooperative and altruistic behavior in the sense of the total fitness maximization for 
the group of relatives.
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Let us describe the corresponding model. Assume that interaction in a population is 
characterized by the set of strategies S and fitness functions . In contrast 
to the previous models, individuals can distinguish between siblings (“sibs”), that is 
brothers and sisters, and other members of the population and choose a strategy 
depending on this characteristic. 
Thus, a full strategy (s,s’) includes 
component s which is applied to sibs  
s’ for other individuals (strangers)
At a time period, an individual interacts with sibs with some frequency and 
with strangers with frequency 1-λ . Total fitness additively depends on the results of 
interactions with relatives and the rest of the population:

where 
 ,      determine the results of the interaction respectively with relatives and 
strangers 
 π’ is a distribution over component s’
 We assume that all sibs play the same strategies. 
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Thus, the interaction is characterized by a population game

where     is a distribution over full strategies.

Theorem 5.1 Any strategy (s,s’) where is strictly dominated by 
strategy (s*,s') where Distribution      is a Nash equilibrium if for all 
specified non-optimal strategies and the corresponding distribution π’ is a 
Nash equilibrium of the game  

Thus, in any conflict similar to a Prisoner's dilemma, sibs play the cooperative 
strategy with respect to each other. 
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In order to explain altruistic behavior, consider the following modification of the 
model. 
Assume that in the interaction sibs may take on one of two different roles (dominating 
and subordinating). Let the strategy and the fitness function depend on the role. Then 
the full strategy with respect to relatives is determined by the pair  

Only strategies  , which provide the maximum total fitness, 
survive elimination of strictly dominated strategies. Proceeding from Theorem 5.1, 
we may conclude that evolution in self-reproducing populations leads to behavior that 
maximizes the total fitness of sibs. Though the last model contains an implicit 
restriction on the evolutionary mechanism that determines the distribution over 
strategies with respect to relatives, this restriction is not important: any other 
mechanism would lose in competition with the given mechanism, which realizes the 
optimal strategy s* specified in theorem 5.1. 
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Note that these results may be generalized for relations between cousins, second 
cousins, etc.
Full strategy includes variants of behavior s1, ..., sk with respect to relatives of 
different degrees 1,...,k and s’ with respect to strangers. 
The fitness function is of the form , λ
characterizes the frequency of interaction with relatives of degree i. 

As above, we assume that all relatives apply the same strategy with respect to each 
other. This assumption corresponds to the model of direct inheritance and does not 
restrict generality within the context of the proposed model of evolutionary 
mechanism selection. Then, elimination of strictly dominated strategies leads to 
optimization of relations between relatives: surviving strategies are those s* such that 
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As in biological, in social populations with low migration level interacting individuals 
usually have common ancestors at least in 7th generation
Consider two random individuals from population with  individuals
Assume that they don't have common ancestors in 7 generations
Then, 7 generations ago each of them had 64 ancestors of different sex
Let's take 104 as the size of the population (that means at average 4 children in a 
family)
Condition that no one ancestor female of one individual married male ancestor of 
another individual is necessary condition for having no common ancestors
Probability of this event: (1-64/5900)129 < 0,1

Proceeding from those results, we should expect widespread cooperative and 
altruistic behavior for total fitness maximization. However real behavior doesn't 
usually correspond to friendship principles. And in biological populations such 
behavior forms are not dominating. Examples of tough competition between relatives 
are well-known. Sometimes they even eat children of each other. One of reasons for 
limited spreading of cooperative behavior is its insecurity in case of implemention 
of selfish mutants.

510
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Relating to social populations, there exists one more problem. Density of relationship 
inside a family is specific for different nations. So, it seems interesting to define 
degrees of altruism and cooperation in Nash equilibrium depending on these 
parametres and mutation intensity.

Note that the problem of cooperative and altruistic behavior prevalence is studied in 
different settings. 

For instance, the theory of repeated games explains the prevalence of cooperation in 
repeated conflict situations proceeding from individual fitness optimization. 
Repetition provides the possibility to punish those individuals who fail to behave 
cooperatively. Taking into account such future  punishments, cooperative behavior 
turns out to be individually profitable. While the equivalence between individual 
fitness and total fitness does not hold in the evolutionary models considered above,  
cooperative behavior nevertheless can spread broadly due to the selection of 
evolutionary mechanisms.
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Peculiarities of behavior evolution in social populations.
Superindividuals.

Their impact on utility functions and processes of nation reproduction
Actual behavior in modern social populations maximizes neither individual nor group 
fitness.  Let us take social-welfare states such as Sweden or Germany. Favorable 
conditions for survival and normal biological development are guaranteed there to 
any newborn citizen regardless of his or her social origin. However, demographic 
statistics indicate that most people ignore the advantages in reproductive 
opportunities. At the end of the twentieth century GNP per head of population in 
Germany and Sweden was 10 times biger then in Russia. The fertility rate in those 
countries was identically low: 9-10 per 1000. For instance, the pool of Stockholm 
inhabitants in 1995 showed that 70% of the adult population had no children and did 
not plan to have them. («World population prospects», 1996)
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Why do the evolutionary models examined above not seem to apply directly for 
current social populations? Let us note factors that explain this discrepancy.
a)the impossibility for children to reliably inherit parental strategies within 
social populations. 
The behavior strategies are so complicated and the environment is so variable that an 
individual could spend most of his life trying to teach his descendants. The division of 
labor and differential access to educational institutions appeared at an early stage of 
mankind’s development. These institutions play a crucial role in forming the behavior 
of new generations. Later governments, churches and other organizations realized the 
importance of educational institutions and effectively used them to form desirable 
behavior.
b)The problem of payoff evaluation for different behavior strategies is rather 
complicated even for theoretical analysis. 
In practice, decision-makers are usually unable to carry out a complete evaluation in a 
reasonable time. Biological evolution has formed various mechanisms that facilitate 
fast decisions that generally are close to though not completely optimal in the sense of 
fitness.
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One such mechanism is the feeling of pleasure or satisfaction related to food and 
comfort. 
In nature, actions that are pleasant or conducive to achieving pleasure are usually 
rational in the sense of individual reproduction. In particular, provision and 
consumption of food and some other resources are necessary for reproduction. 
However, devotion to this objective function may impede reproduction in some 
instances. One  example of fitness-impeding commitment to food consumption within 
an ecological system is the interaction between a lamehuza beetle and ants who feed 
on secretions produced by the beetle. Sometimes the secretions have a drug-like effect 
on ants: they throw the queen out of the ant-hill, put the lamehuza beetle in the 
queen’s place and take care of it in order to get more secretions. In time this ant 
family perishes.
This example is exceptional for ecosystems. The situation in modern human society is 
different. A lot of people consume large amounts of alcohol, tobacco, excessive food 
and other goods that are harmful or at least unnecessary for reproduction. There are 
many families and single individuals spending the whole of their lives to earn money 
for such consumption and finally having at most one child.
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Another auxiliary mechanism of strategy determination is leader imitation. 
 In natural populations it promotes learning and permits the coordination of 

actions of individuals within groups and thus increases their fitness. 
 In social populations imitation creates an additional possibility for behavior 

manipulation by choosing an appropriate leader.

The  methods of behavior manipulation described above (control over the educational 
process, usage of pleasure incentives and the imitation mechanism) have been 
practiced since ancient times. But the situation has dramatically changed with the 
development of mass media in the 20th century. Currently, television provides the 
possibility to influence billions of people by playing the role of a teacher and creating 
models for imitation.
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Now consider who or what changes the objective functions in order to form certain 
behavior in social populations.
 In our previous examples for ecosystems, we identified two different variants. In 

the case of the ants and the lamehuza beetle, the manipulator is an individual 
belonging to another population. The interaction between the populations is of 
the "predator-prey" type.

 In the case of social insects, individual behavior is formed by a self-reproducing 
superindividual – the family of ants, bees or other social insects. While 
suppressing individual reproduction of some part of the population, the 
evolutionary mechanism provides efficient reproduction of these superindividuals 
and the population as a whole.
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In general a superindividual related to a given biological or human population is a 
self-reproducing structure that includes some individuals of this population among its 
elements. Besides the individual organisms, the superindividual may comprise other 
material or immaterial components. In social populations we meet similar and more 
complicated variants of behavior regulation. In addition to  superindividuals of a 
biological nature (families), there exist self-reproducing superindividuals of a social-
economic nature (corporations, art and scientific schools, public and religious 
organizations, and government institutions). Instead of replication, superindividuals 
may either grow, involving new human and material resources, or collapse.
Thus, superindividuals use the population as a resource for their own reproduction 
and growth, and influence population behavior for this purpose. The more intensive is 
the specific activity of involved individuals, the faster is growth and development of 
the superindividual. Since the time and energy of each person is limited, the 
superindividual often suppresses other kinds of activity, in particular, individual 
reproduction. 
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According to all summarized results it is possible to formulate hypotesis that 
individual utility functions in modern society are generally determined by 
superindividuals who form them in a way to provide this reproduction and growth. In 
other words, dynamic models of competition and selection is better to formulate and 
use at superindividual level. 
Analysis of such models connected to competition gives us useful results from 
endogenuos determination of payoff functions point of view. For research of other 
social-economic processes it is good to use models of interaction and natural selection 
of self-reproducing individuals of different types. According to complexity of social 
systems it seems impossible to build a complete quantified evolution model of social 
behavior that will be similar to replicator dynamic model. Nevertheless, conception of 
superindividual competition  and their influence on social behavior helps to analyse 
some problems of economics and sociology. In particular, this conception helps to 
produce a human behavior model that penetrates disadvantages of 'economic man' 
and 'biologic man'.
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Let's develop an approach proposed by Germeyer in 1973.
Individual strategies (chosen conciously or not) are distributions of his/her time and other 
resources to different activities
This distribution and noncontrolled factors z determine  the values of auxiliary utility 
function . That shows satisfaction from consumption and also reproduction parametres:

1) for himself (survival )
2) for his family (fitness )
3) for different superindividuals he is included to (parametres )

Choosing strategy he maximizes some aggregate of these functions
In mentioned approach the criterion is considered. It can be interpreted in 
such way:

 is a minimal possible value of component
 is importance of maximizating this component according to minimal possible level

According to this criteria individual spends his resourse on maximization of the worst indexes. 
Real behavior is not always like this criterion. Quite often individual uses resources in a way 
where he supposes the most effect (formally it corresponds to changing minimum and 
maximum in this equation). Different people are characterised with different types of 
aggregation and different indexes.

as
au0

au1
au2

,...4,3, jua
j

as

)
)(),(

(min
a

a
i

aa
i

i

zwzsu





a
iw
a
i

i



56

Let's note similarities of this model with L. Gumilev concept. He separates the 
following types:
1) Harmonious people are the individuals who work as much as it is necessary for life 
sustaining and offspring liмes. Formally this type maximizes combination of 
individual and family fitness.
2) Subpassionarities can't control their wills even if their satisfaction does harm to 
themselves and people around them. Do not take care of offsprings. Maximize  .
3)Passionaries are individuals with hanged energy. Their work is changing 
environment. Their activity is not connected with material benefits, pleasures, 
individual or family reproduction. Workaholics providing manufacturing and 
economical corporation success, eggective work of government institutions, 
scientists, artists who develop their area of ineterst despite material profits.

From social and economic modelling point of view revealing of harmonious, 
subpassionarities and passionarities people distribution over self-reproducing
structures of different types is of great interest. Collecting and processing suitable 
information is a challenging problem in sociology and experimental economics.

au0



57

References

1. Vasin A. ''Evolutionary game theory. Part 1. Optimality principles and models of 
behavior dynamics.''   New  Economic Assosiation magazine, 3-4, M.:2009
2.Vasin A. (2005) ''Noncooperative game in nature and society.'' M.:Maks Press
3. Maynard Smith, J. (1982) Evolution and the Theory of Games (Cambridge: 
Cambridge. University Press)


